
A Gentle Introduction to ROS

Chapter: Launch files

Jason M. O’Kane

Jason M. O’Kane

University of South Carolina

Department of Computer Science and Engineering

315 Main Street

Columbia, SC 29208

http://www.cse.sc.edu/~jokane

©2014, Jason Matthew O’Kane. All rights reserved.

This is version 2.1.6(ab984b3), generated on April 24, 2018.

Typeset by the author using LATEX and memoir.cls.

ISBN 978-14-92143-23-9

http://www.cse.sc.edu/~jokane

Chapter 6

Launch files
In which we configure and run many nodes at once using launch files.

If you’ve worked through all of the examples so far, by now you might be getting frus-

trated by the need to start so many different nodes, not to mention roscore, by hand in

so many different terminals. Fortunately, ROS provides a mechanism for starting the mas-

ter and many nodes all at once, using a file called a launch file. The use of launch files

is widespread through many ROS packages. Any system that uses more than one or two

nodes is likely to take advantage of launch files to specify and configure the nodes to be

used. This chapter introduces these files and the roslaunch tool that uses them.

6.1 Using launch files

Let’s start by seeing how roslaunch enables us to start many nodes at once. The basic idea

is to list, in a specific XML format, a group of nodes that should be started at the same

time.Í1 Listing 6.1 shows a small example launch file that starts a turtlesim simulator,

along with the teleoperation node that we saw in Chapter 2 and the subscriber node we

wrote in Chapter 3. This file is saved as example.launch in the main package directory for

the agitr package. Before we delve into specifics of the launch file format, let’s see how

those files can be used.

Executing launch files To execute a launch file, use the roslaunch command:Í2

Í1http://wiki.ros.org/roslaunch/XML

Í2http://wiki.ros.org/roslaunch/Commandline Tools

83

http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/roslaunch/Commandline Tools

6. LAUNCH FILES

1 <launch>

2 <node

3 pkg="tu r t l e s im "

4 type="turtlesim_node "

5 name="tu r t l e s im "

6 respawn="true "

7 />

8 <node

9 pkg="tu r t l e s im "

10 type="turt le_te leop_key "

11 name="teleop_key"

12 r equ i r ed="true "

13 launch−p r e f i x="xterm −e"

14 />

15 <node

16 pkg="a g i t r "

17 type="subpose "

18 name="pose_subsc r ibe r"

19 output="sc r e en"

20 />

21 </launch>

Listing 6.1: A launch file called example.launch that starts three nodes at once.

roslaunch package-name launch-file-name

You can invoke the example launch file using this command:

roslaunch agitr example.launch

If everything works correctly, this command will start three nodes. You should get turtle-

sim window, along with another window that accepts arrow key presses for teleoperating

the turtle. The original terminal in which you ran the roslaunch command should show

the pose information logged by our subpose program. Before starting any nodes, ros-

launch will determine whether roscore is already running and, if not, start it automatically.

� Be careful not to confuse rosrun, which starts a single node, with roslaunch, which

can start many nodes at once.

84

6.1. Using launch files

¹ It is also possible to use launch files that are not part of any package. To do this,

give roslaunch only the path to the launch file, without mentioning any package.

For example, in the author’s account, this command starts our example launch file,

without relying on the fact that it’s a part of any ROS package:

roslaunch ∼/ros/src/agitr/example.launch

This sort of workaround to circumvent the usual package organization is probably

not a good idea for anything but very simple, very short-lived experimentation.

An important fact about roslaunch—one that can be easy to forget—is that all of the

nodes in a launch file are started at roughly the same time. As a result, you cannot be sure

about the order in which the nodes will initialize themselves. Well-written ROS nodes don’t

care about the order in which they and their siblings start up. (Section 7.3 has an example

program in which this becomes important.)

¹ This behavior is a reflection of the ROS philosophy that each node should be largely

independent of the other nodes. (Recall our discussion of loose coupling of nodes

from Section 2.8.) Nodes that function well only when launched in a specific order

are a poor fit for this modular design. Such nodes can almost always be redesigned

to avoid ordering constraints.

Requesting verbosity Like many command line tools, roslaunch has an option to re-

quest verbose output:

roslaunch -v package-name launch-file-name

Listing 6.2 shows an example of the information this option generates beyond the usual

status messages. It can occasionally be useful for debugging to see this detailed explana-

tion of how roslaunch is interpreting your launch file.

Ending a launched session To terminate an active roslaunch, use Ctrl-C. This signal

will attempt to gracefully shut down each active node from the launch, and will forcefully

kill any nodes that do not exit within a short time after that.

85

6. LAUNCH FILES

1 . . . l oad ing XML f i l e [/ opt/ ro s / ind i g o / e tc / ro s / ro s c o r e . xml]

2 . . . execut ing command param [r o s v e r s i o n ro s launch]

3 Added parameter [/ r o s v e r s i o n]

4 . . . execut ing command param [r o s v e r s i o n −d]

5 Added parameter [/ r o s d i s t r o]

6 Added core node o f type [ro sout / ro sout] in namespace [/]

7 . . . l oad ing XML f i l e [/ home/ jokane/ ro s / a g i t r /example . launch]

8 Added node o f type [t u r t l e s im / turtlesim_node] in namespace [/]

9 Added node o f type [a g i t r / pubvel] in namespace [/]

10 Added node o f type [a g i t r / subpose] in namespace [/]

Listing 6.2: Extra output generated by the verbose mode of roslaunch.

6.2 Creating launch files

Having seen how launch files can be used, we’re ready now to think about how to create

them for ourselves.

6.2.1 Where to place launch files

As with all other ROS files, each launch file should be associated with a particular package.

The usual naming scheme is to give launch files names ending with .launch. The simplest

place to store launch files is directly in the package directory. When looking for launch

files, roslaunch will also search subdirectories of each package directory. Some packages,

including many of the core ROS packages, utilize this feature by organizing launch files

into a subdirectory of their own, usually called launch.

6.2.2 Basic ingredients

The simplest launch files consist of a root element containing several node elements.

Inserting the root element Launch files are XML documents, and every XML document

must have exactly one root element. For ROS launch files, the root element is defined by a

pair of launch tags:

<launch>

. . .

</launch>

All of the other elements of each launch file should be enclosed between these tags.

86

6.2. Creating launch files

Launching nodes The heart of any launch file is a collection of node elements, each of

which names a single node to launch.Í3 A node element looks like this:

<node

pkg="package-name"

type="executable-name"

name="node-name"

/>

� The trailing slash near the end of the node tag is both important and easy to forget.

It indicates that no closing tag (“</node>”) is coming, and that the node element

is complete. XML parsers are required to be very strict about this sort of thing. If

you omit this slash, be prepared for errors like this:

Invalid roslaunch XML syntax: mismatched tag

You can also also write the closing tag explicitly:

<node pkg=". . . " type=". . . " name=". . . "></node>

In fact, this explicit closing tag is needed if the node has children, such as remap or

param elements. These elements are introduced in Section 6.4 and 7.4, respectively.

A node element has three required attributes:

R The pkg and type attributes identify which program ROS should run to start this

node. These are the same as the two command line arguments to rosrun, specifying

the package name and the executable name, respectively.

R The name attribute assigns a name to the node. This overrides any name that the

node would normally assign to itself in its call to ros::init.

¹ This override fully clobbers the naming information provided to ros::init, in-

cluding any request that the node might have made for an anonymous name.

Í3http://wiki.ros.org/roslaunch/XML/node

87

http://wiki.ros.org/roslaunch/XML/node

6. LAUNCH FILES

(See Section 5.4.) To use an anonymous name from within a launch file, use

an anon substitutionÍ4 for the name attribute, like this:

name="$(anon base_name)"

Note, however, that multiple uses of the same base name will generate the

same anonymous name. This means that (a) we can refer to that name in

other parts of the launch file, but (b) we must be careful to use different base

names for each node we want to anonymize.

Finding node log files An important difference between roslaunch and running each

node individually using rosrun is that, by default, standard output from launched nodes is

redirected to a log file, and does not appear on the console.1 The name of this log file is:

∼/.ros/log/run_id/node_name-number-stdout.log

The run_id is a unique identifier generated when the master is started. (See page 72 for

details about how to look up the current run_id.) The numbers in these file names are

small integers that number the nodes. For example, running the launch file in Listing 6.1

sends the standard output of two of its nodes to log files with these names:

turtlesim-1-stdout.log

telep_key-3-stdout.log

These log files can be viewed with the text editor of your choice.

Directing output to the console To override this behavior for a single node, use the out-

put attribute in its node element:

output="screen"

Nodes launched with this attribute will display their standard output on screen instead

of in the log files discussed above. The example uses this attribute for the subpose node,

which explains why the INFO messages from this node appear on the console. It also

explains why this node is missing from the list of log files above.

1In the current version of roslaunch, output on standard error—notably including console outputs of

ERROR- and FATAL-level log messages—appears on the console, rather than in log files. However, a com-

ment in the roslaunch source code notes that this behavior may be changed in the future.

Í4http://wiki.ros.org/roslaunch/XML

88

http://wiki.ros.org/roslaunch/XML

6.2. Creating launch files

In addition to the output attribute, which affects only a single node, we can also force

roslaunch to display output from all of its nodes, using the --screen command-line option:

roslaunch --screen package-name launch-file-name

� If a program, when started from roslaunch, does not appear to be producing the

output you expect, you should verify that that node has the output="screen" at-

tribute set.

Requesting respawning After starting all of the requested nodes, roslaunch monitors

each node, keeping track of which ones remain active. For each node, we can ask ros-

launch to restart it when it terminates, by using a respawn attribute:

respawn="true"

This can be useful, for example, for nodes that might terminate prematurely, due to soft-

ware crashes, hardware problems, or other reasons.

The respawn attribute is not really necessary in our example—All three programs are

quite reliable—but we include it for the turtlesim_node to illustrate how respawning

works. If you close the turtlesim window, the corresponding node will terminate. ROS

quickly notices this and, since that node is marked as a respawn node, a new turtlesim

node, with its accompanying window, appears to replace the previous one.

Requiring nodes An alternative to respawn is to declare that a node is required:

required="true"

When a required node terminates, roslaunch responds by terminating all of the other ac-

tive nodes and exiting itself. That sort of behavior might be useful, for example, for nodes

that (a) are so important that, if they fail, the entire session should be abandoned, and (b)

cannot be gracefully restarted by the respawn attribute.

The example uses the required attribute for the turtle_teleop_key node. If you close

the window in which the teleoperation node runs, roslaunch will kill the other two nodes

and exit.

89

6. LAUNCH FILES

� Because their meanings conflict with one another, roslaunch will complain if you

set both the respawn and required attributes for a single node.

Launching nodes in their own windows One potential drawback to using roslaunch,

compared to our original technique of using rosrun in a separate terminal for each node,

is that all of the nodes share the same terminal. This is manageable (and often helpful) for

nodes that simply generate log messages, and do not accept console input. For nodes that

do rely on console input, as turtle_teleop_key does, it may be preferable to retain the

separate terminals.

Fortunately, roslaunch provides a clean way to achieve this effect, using the launch-

prefix attribute of a node element:

launch-prefix="command-prefix"

The idea is that roslaunch will insert the given prefix at the start of the command line it

constructs internally to execute the given node. In example.launch, we used this attribute

for the teleoperation node:

launch-prefix="xterm -e"

Because of this attribute, this node element is roughly equivalent to this command:

xterm -e rosrun turtlesim turtle_teleop_key

As you may know, the xterm command starts a simple terminal window. The -e argument

tells xterm to execute the remainder of its command line (in this case, rosrun turtlesim

turtle_teleop_key) inside itself, in lieu of a new interactive shell. The result is that turtle-

_teleop_key, a strictly text-based program, appears inside a graphical window.

¹ The launch-prefix attribute is, of course, not limited to xterm. It can also be use-

ful for debugging (via gdb or valgrind), or for lowering the scheduling priority of a

process (via nice).Í5

Í5http://wiki.ros.org/rqt_console

90

http://wiki.ros.org/rqt_console

6.3. Launching nodes inside a namespace

/sim1/turtle1/cmd_vel

/sim1/turtlesim_node

/sim1/turtle1/pose /sim1/turtle1/color_sensor

/sim2/turtle1/cmd_vel

/sim2/turtlesim_node

/sim2/turtle1/pose /sim2/turtle1/color_sensor

/sim1/teleop_key /sim2/velocity_publisher

Figure 6.1: Nodes and topics (in ellipses and rectangles, respectively) created by dou-

blesim.launch.

6.3 Launching nodes inside a namespace

We saw in Section 5.2 that ROS supports relative names, which utilize the concept of a

default namespace. The usual way to set the default namespace for a node—a process

often called pushing down into a namespace—is to use a launch file, and assign the ns

attribute in its node element:

ns="namespace"

Listing 6.3 shows an example launch file that uses this attribute to create two independent

turtlesim simulators. Figure 6.1 shows the nodes and topics that result from this launch

file.

R The usual turtlesim topic names (turtle1/cmd_vel, turtle1/color_sensor, and

turtle1/pose) are moved from the global namespace into separate namespaces call-

ed /sim1 and /sim2. This change occurs because the code for turtlesim_node uses

relative names like turtle1/pose (instead of global names like /turtle1/pose), when

it creates its ros::Publisher and ros::Subscriber objects.

R Likewise, the node names in the launch file are relative names. In this case, both

nodes have the same relative name, turtlesim_node. Such identical relative names

are not a problem, however, because the global names to which they are resolved,

namely /sim1/turtlesim_node and /sim2/turtlesim_node, are different.

91

6. LAUNCH FILES

1 <launch>

2 <node

3 name="turtlesim_node "

4 pkg="tu r t l e s im "

5 type="turtlesim_node "

6 ns="sim1"

7 />

8 <node

9 pkg="tu r t l e s im "

10 type="turt le_te leop_key "

11 name="teleop_key"

12 r equ i r ed="true "

13 launch−p r e f i x="xterm −e"

14 ns="sim1"

15 />

16 <node

17 name="turtlesim_node "

18 pkg="tu r t l e s im "

19 type="turtlesim_node "

20 ns="sim2"

21 />

22 <node

23 pkg="a g i t r "

24 type="pubvel "

25 name="ve l o c i t y_pub l i she r "

26 ns="sim2"

27 />

28 </launch>

Listing 6.3: A launch file called doublesim.launch that starts two independent turtlesim

simulations. One simulation has a turtle moved by randomly-generated velocity commands; the

other is teleoperated.

¹ In fact, roslaunch requires the node names in the launch files to be base

names—relative names without mention of any namespaces—and will com-

plain if a global name appears in the name attribute of a node element.

92

6.4. Remapping names

This example has some similarities to the system discussed in Section 2.8.2 In both

cases, we start multiple turtlesim nodes. The results, however, are quite different. In Sec-

tion 2.8, we changed only the node names, and left all of the nodes in the same namespace.

As a result, both turtlesim nodes subscribe to and publish on the same topics. There is no

straightforward way to interact with either of the two simulations individually. In the new

example from Listing 6.3, we pushed each simulator node into its own namespace. The re-

sulting changes to the topic names make the two simulators truly independent, enabling

us to publish different velocity commands to each one.

¹ In this example, the namespaces specified by the ns attributes are themselves rel-

ative names. That is, we used the names sim1 and sim2 in a context within the

launch file in which the default namespace is the global namespace /. As a result,

the default namespaces for our two nodes are resolved to /sim1 and /sim2.

It is technically possible to provide a global name for this attribute instead. How-

ever, that’s almost always a bad idea, for essentially the same reason that using

global names inside nodes is a bad idea. Doing so would prevent the launch file

from itself being pushed into a namespace of its own, for example as a result of be-

ing included by another launch file.

6.4 Remapping names

In addition to resolving relative names and private names, ROS nodes also support remap-

pings, which provide a finer level of control for modifying the names used by our nodes.Í6

Remappings are based on the idea of substitution: Each remapping provides an original

name and a new name. Each time a node uses any of its remappings’ original names, the

ROS client library silently replaces it with the new name from that remapping.

6.4.1 Creating remappings

There are two ways create remappings when starting a node.

2As an aside, now that we’ve seen launch files, you should be able to replace the ugly series of four rosrun

commands that section with a single small launch file.

Í6http://wiki.ros.org/Remapping Arguments

93

http://wiki.ros.org/Remapping Arguments

6. LAUNCH FILES

R To remap a name when starting a node from the command line, give the original

name and the new name, separated by a :=, somewhere on the command line.

original-name:=new-name

For example, to run a turtlesim instance that publishes its pose data on a topic

called /tim instead of /turtle1/pose, use a command like this:

rosrun turtlesim turtlesim_node turtle1/pose:=tim

R To remap names within a launch file, use a remap element:Í7

<remap from="original-name" to="new-name" />

If it appears at the top level, as a child of the launch element, this remapping will

apply to all subsequent nodes. These remap elements can also appear as children of

a node element, like this:

<node node-attributes >

<remap from="original-name" to="new-name" />

. . .

</node>

In this case, the given remappings are applied only to the single node that owns

them. For example, the command line above is essentially equivalent to this launch

file construction:

<node pkg="turtlesim" type="turtlesim_node"

name="turtlesim" >

<remap from="turtle1/pose" to="tim" />

</node>

There is one important thing to remember about the way remappings are applied: All

names, including the original and new names in the remapping itself, are resolved to global

names, before ROS applies any remappings. As a result, names that appear in remappings

are often relative names. After name resolution is complete, remapping is done by a di-

rect string comparison, looking for names used by a node that exactly match the resolved

original name in any remapping.

Í7http://wiki.ros.org/roslaunch/XML/remap

94

http://wiki.ros.org/roslaunch/XML/remap

6.4. Remapping names

6.4.2 Reversing a turtle

For a concrete example of how these kinds of remappings might be helpful, consider a

scenario in which we want to use turtle_teleop_key to drive a turtlesim turtle, but with

the meanings of arrow keys reversed. That is, suppose we want the left and right arrow keys

to rotate the turtle clockwise and counterclockwise, respectively, and the up and down

arrows to move the turtle backward and forward, respectively. The example may seem

contrived, but it does represent a general class of real problems in which the messages

published by one node must be “translated” into a format expected by another node.

One option, of course, would be to make a copy of the turtle_teleop_key source code

and modify it to reflect the change we want. This option is very unsatisfying, because

it would require us to understand and, even worse, to duplicate the turtle_teleop_key

code. Instead, let’s see how to do this compositionally, creating a new program that inverts

the velocity commands published by the existing teleoperation node.

Listing 6.4 shows a short program that performs the change that we need: It subscribes

to turtle1/cmd_vel and, for each message it receives, it inverts the both linear and angu-

lar velocities, publishes the resulting velocity command on turtle1/cmd_vel_reversed.

The only complication—and the reason this example belongs in a section about re-

mappings—is that the turtlesim simulator does not actually subscribe to those reversed

velocity messages. Indeed, starting the three relevant nodes with simple rosrun com-

mands leads to the graph structure shown in Figure 6.2. From the graph, it’s clear that this

system would not have the desired behavior. Because velocity commands still travel di-

rectly from teleop_turtle to turtlesim, the turtle will still respond in its usual, unreversed

way.

This situation—one in which some node subscribes to the “wrong” topic—is precisely

the kind of situation for which remappings are intended. In this case, we can correct

the problem by sending a remapping to turtlesim that replaces turtle1/cmd_vel with

turtle1/cmd_vel_reversed. Listing 6.5 shows a launch file that starts all three nodes,

including the appropriate remap for the turtlesim_node; Figure 6.3 shows the correct

graph that results.

95

6. LAUNCH FILES

1 // This program subscribes to turt le1/cmd_vel and

2 // republishes on turt le1/cmd_vel_reversed ,

3 // with the signs inverted .

4 #inc lude <ros / ro s . h>

5 #inc lude <geometry_msgs /Twist . h>

6

7 ro s : : Publ i she r ∗pubPtr ;

8

9 void commandVelocityReceived(

10 const geometry_msgs : : Twist& msgIn

11) {

12 geometry_msgs : : Twist msgOut ;

13 msgOut . l i n e a r . x = −msgIn . l i n e a r . x ;

14 msgOut . angular . z = −msgIn . angular . z ;

15 pubPtr−>publ i sh (msgOut) ;

16 }

17

18 i n t main (i n t argc , char ∗∗ argv) {

19 ro s : : i n i t (argc , argv , " r eve r s e_ve l o c i t y ") ;

20 ro s : : NodeHandle nh ;

21

22 pubPtr = new ros : : Publ i she r (

23 nh . adve r t i s e<geometry_msgs : : Twist>(

24 " t u r t l e 1 /cmd_vel_reversed" ,

25 1000)) ;

26

27 ro s : : Subsc r ibe r sub = nh . subsc r ibe (

28 " t u r t l e 1 /cmd_vel" , 1000 ,

29 &commandVelocityReceived) ;

30

31 ro s : : sp in () ;

32

33 de l e t e pubPtr ;

34 }

Listing 6.4: A C++ program called reverse_cmd_vel that reverses turtlesim velocity commands.

96

6.5. Other launch file elements

/turtle1/color_sensor

/turtle1/cmd_vel

/turtlesim /reverse_velocity

/turtle1/cmd_vel_reversed/turtle1/pose

/teleop_turtle

Figure 6.2: The ROS graph resulting from an incorrect attempt to use reverse_cmd_vel

to reverse a turtlesim turtle.

6.5 Other launch file elements

This section introduces a few additional roslaunch constructions.Í8 To illustrate these

features, we’ll refer to the launch file in Listing 6.6. This launch file starts either two or

three independent turtlesim simulators, depending on how it is launched.

6.5.1 Including other files

To include the contents of another launch file, including all of its nodes and parameters,

use an include element:Í9

<include file="path-to-launch-file" />

The file attribute expects the full path to the file we want to include. Because it can be

both cumbersome and brittle to enter this information directly, most include elements

use a find substitution to search for a package, instead of explicitly naming a directory:

<include file="$(find package-name)/launch-file-name" />

The find argument is expanded, via a string substitution, to the path to the given package.

The specific launch file is usually much easier to name from there. The example uses this

technique to include our previous example, doublesim.launch.

Í8http://wiki.ros.org/ROS/Tutorials/Roslaunch tips for larger projects

Í9http://wiki.ros.org/roslaunch/XML/include

97

http://wiki.ros.org/ROS/Tutorials/Roslaunch tips for larger projects
http://wiki.ros.org/roslaunch/XML/include

6. LAUNCH FILES

1 <launch>

2 <node

3 pkg="tu r t l e s im "

4 type="turtlesim_node "

5 name="tu r t l e s im "

6 >

7 <remap

8 from="t u r t l e 1 /cmd_vel"

9 to="t u r t l e 1 /cmd_vel_reversed"

10 />

11 </node>

12 <node

13 pkg="tu r t l e s im "

14 type="turt le_te leop_key "

15 name="teleop_key"

16 launch−p r e f i x="xterm −e"

17 />

18 <node

19 pkg="a g i t r "

20 type="reverse_cmd_vel "

21 name="reve r s e_ve l o c i t y "

22 />

23 </launch>

Listing 6.5: A launch file called reverse.launch that starts a turtlesim that can be teleoperated

with directions reversed.

� Don’t forget that roslaunch will search through a package’s subdirectories when

searching for a launch file given on its command line. On the other hand, include

elements must name the specific path to the file they want, and cannot rely on this

search of subdirectories. This difference explains how the include element above

might generate errors, even though a call to roslaunch, with the same package name

and launch file name, succeeds.

The include element also supports the ns attribute for pushing its contents into a

namespace:

<include file=". . . " ns="namespace" />

98

6.5. Other launch file elements

/turtle1/color_sensor

/turtle1/cmd_vel

/reverse_velocity

/turtle1/cmd_vel_reversed

/turtlesim

/turtle1/pose

/teleop_key

Figure 6.3: The correct ROS graph resulting from reversed.launch. The remap element

enables the nodes to connect properly.

This setup occurs fairly commonly, especially when the included launch file is part of a

another package, and should operate mostly independently of the rest of the nodes.

6.5.2 Launch arguments

To help make launch files configurable, roslaunch supports launch arguments, also called

arguments or even args, which function somewhat like local variables in an executable

program.Í10 The advantage is that you can avoid code duplication by writing launch files

that use arguments for the small number of details that might change from run to run.

To illustrate this idea, the example launch file uses one argument, called use_sim3, to

determine whether to start three copies of turtlesim or only two.

� Although the terms argument and parameter are used somewhat interchangeably

in many computing contexts, their meanings are quite different in ROS. Parameters

are values used by a running ROS system, stored on the parameter server and acces-

sible to active nodes via the ros::param::get functions and to users via rosparam.

Í10http://wiki.ros.org/roslaunch/XML/arg

99

http://wiki.ros.org/roslaunch/XML/arg

6. LAUNCH FILES

1 <launch>

2 <inc lude

3 f i l e ="$ (f i nd a g i t r) / doublesim . launch "

4 />

5 <arg

6 name="use_sim3"

7 de f au l t="0"

8 />

9

10 <group ns="sim3" i f ="$ (arg use_sim3) " >

11 <node

12 name="turtlesim_node "

13 pkg="tu r t l e s im "

14 type="turtlesim_node "

15 />

16 <node

17 pkg="tu r t l e s im "

18 type="turt le_te leop_key "

19 name="teleop_key"

20 r equ i r ed="true "

21 launch−p r e f i x="xterm −e"

22 />

23 </group>

24 </launch>

Listing 6.6: A launch file called triplesim.launch that illustrates group, include, and arg

arguments.

(See Chapter 7.) In contrast, arguments make sense only within launch files; their

values are not directly available to nodes.

Declaring arguments To declare the existence of an argument, use an arg element:

<arg name="arg-name" />

Declarations like this are not strictly required (unless you want to assign a default or a

value—see below), but are a good idea because they can make it clear to a human reader

what arguments the launch file is expecting.

100

6.5. Other launch file elements

Assigning argument values Every argument used in a launch file must have an assigned

value. There are a few ways to accomplish this. You can provide a value on the roslaunch

command line:

roslaunch package-name launch-file-name arg-name:=arg-value

Alternatively, you can provide a value as part of the arg declaration, using one of these two

syntaxes:

<arg name="arg-name" default="arg-value" />

<arg name="arg-name" value="arg-value" />

The only difference between them is that a command line argument can override a de-

fault, but not a value. In the example, use_sim3 has a default value of 0, but this can be

changed from the command line, like this:

roslaunch agitr triplesim.launch use_sim3:=1

If we were to modify the launch file, replacing default with value, then this command

would generate an error, because argument values set by value cannot be changed.

Accessing argument values Once an argument is declared and a value assigned to it, you

can use its value using an arg substitution, like this:

$(arg arg-name)

Anywhere this substitution appears, roslaunch will replace it with the value of the given

argument. In the example, we use the use_sim3 argument once, inside the if attribute of

a group element. (We’ll introduce both if and group shortly.)

Sending argument values to included launch files One limitation of the argument set-

ting technique presented so far is that it does not provide any means for passing arguments

to subordinate launch files that we import using include elements. This is important be-

cause, much like (lexical) local variables, arguments are only defined for the launch file

that declares them. Arguments are not “inherited” by included launch files.

The solution is to insert arg elements as children of the include element, like this:

<include file="path-to-launch-file">

<arg name="arg-name" value="arg-value"/>

. . .

</include>

101

6. LAUNCH FILES

Note that this usage of the arg element differs from the arg declarations we’ve seen so

far. The arguments mentioned between the include tags are arguments for the included

launch file, not for the launch file in which they appear. Because the purpose is to establish

values for the arguments needed by the included file, the value attribute is required in this

context.

One common scenario is that both launch files—the included one and the including

one—have some arguments in common. In such cases, we might want to pass those values

along unchanged. An element like this, using the same argument name in both places,

does this:

<arg name="arg-name" value="$(arg arg-name)" />

In this instance, the first appearance of the argument’s name refers, as usual, to that argu-

ment in the included launch file. The second appearance of the name refers to the argu-

ment in the including launch file. The result is that the given argument will have the same

value in both launch files.

6.5.3 Creating groups

One final launch file feature is the group element, which provides a convenient way to

organize nodes in a large launch file.Í11 The group element can serve two purposes:

R Groups can push several nodes into the same namespace.

<group ns="namespace">

. . .

</group>

Every node within the group starts with the given default namespace.

¹ If a grouped node has its own ns attribute, and that name is (as it probably

should be) a relative name, then the resulting node will be started with a de-

fault namespace that nests the latter namespace within the former. These

rules, which match what one would expect for resolving relative names, also

apply to nested groups.

R Groups can conditionally enable or disable nodes.

Í11http://wiki.ros.org/roslaunch/XML/group

102

http://wiki.ros.org/roslaunch/XML/group

6.5. Other launch file elements

<group if="0-or-1">

. . .

</group>

If the value of the if attribute is 1, then the enclosed elements are included normally.

If this attribute has value 0, then the enclosed elements are ignored. The unless

attribute works similarly, but with the meanings reversed:

<group unless="1-or-0">

. . .

</group>

Of course, it is unusual to directly type a 0 or 1 for these attributes. Combined with

the arg substitution technique, however, they form a powerful way of making your

launch files configurable.

� Note that 0 and 1 are the only legitimate values for these attributes. In partic-

ular, the usual boolean AND and OR operations that you might expect are not

directly available.

The example has a single group that combines these two purposes. The group has

both the ns attribute (to push the group’s two nodes into the sim3 namespace) and the

if attribute (to implement the enabling or disabling of that third simulation based on the

use_sim3 argument).

� Notice that group is never strictly necessary. It’s always possible to write the ns, if,

and unless attributes manually for each element that we might otherwise include

in a group. However, groups can often reduce duplication—the namespaces and

conditions appear only once—and make the launch file’s organization more readily

apparent.

¹ Unfortunately, only these three attributes can be passed down via a group. For ex-

ample, as much as we might want to, output="screen" cannot be set for a group

element, and must be given directly to each node to which we want to apply it.

103

6. LAUNCH FILES

6.6 Looking forward

In the chapters so far, we’ve seen how to create nodes that communicate by passing mes-

sages and how to start many nodes at once, with potentially complex configurations. The

next chapter introduces the parameter server, which provides a centralized way to provide

parts of that configuration information to nodes.

104

