Understanding ROS
using Turtlesim

F1/10 Autonomous Racing
CS 4501/5Y54582
Spring 2019

Madhur Behl
madhur.behl@virginia.edu

[Compiled using the official ROS Turtlesim tutorials.]

| NON® [X| TurtleSim

Contents
(010 TR 3

ROS Nodes, Topics, And Servicesusing TUrtleSim.........ccoooeveeienenecie e 3
LIS T = 1L =S 4
ROS NOUES WIth TUFTIESIM ... bbbt e e bbbt sbe s 4
(01 T0T0 [= ST PTR 4
ROS ServiceSto MOVE thE TUIIE ..o 5
LS L= oo g = 010 1| PSSP 6
LS L= o Lo o A = oLV PR 6
TUrtleSim NOGE TOPIC POSE........ciiiiiiiiie ittt bbbt e e e e b e 7
Makethe Turtle movein acircleusing rostopiC PUDccceeiiieiinene e 8
Type of MESSAGE FOr CIMA_VE ...ttt ee e e 8
M OVE TNE TUITIE ONCE......iiee bbbttt et et s b e b nse e e 9
I S = B U 4= o o USSR 11
racing@racing-vm-~$ r0SSer ViCe Call /T ESEL........ccueviieiiii et 11
[0S (0] o ol o TSP 11
FOSLOPIC NZ JEUMTIEL/POSE. ...ttt ettt st sr et e st esbeebesneesreeneenean 11

Srosrun turtlesim turtle tElEOP _KEY ..o e 14

N A N Lo o [A= <o o T (UL =SS 14

Node/turtlesim info after AElEOP TUITIE..........ooiiie e 15

Determine data from Topic /AUrtleL/CMA_VEl ..o 17

Tofind turtle’sposition in WindOw USE /TUMtIEL/POSE.......cc.oiiiiiriireeieeerie s 19

(O T g1 o = o TSP 20
PYtRon @nd TUFTIESIM ...ttt 20

Roscore

This starts ROS and creates the Master so that nodes can communicate.

$roscore [1]

From the ROS tutorial http://wiki.ros.org/roscore

roscore is a collection of nodes and programs that are pre-requisites of a ROS-based system. You must have a
roscore running in order for ROS nodes to communicate. It is launched using the roscore command.

NOTE: If you use roslaunch, it will automatically start roscore if it detects that it is not already running.

roscore Will start up:

e aROS Master
e a ROS Parameter Server
e arosout logging node
Leave this window active but minimized so that the ROS Master is still available.

ROS Nodes, Topics, and Servicesusing Turtlesim

A If you are new to ROS - don’t be impatient. There is a great deal to learn but the Turtlesim example
shown here should make things easier.

The ROS official tutorials are at these WEB sites: http://wiki.ros.org/turtlesim/Tutorials

ROS Tutorials Helpful for the Examples to Follow:

o ROS/Tutorials/UnderstandingNodes
o ROS/Tutorials/UnderstandingTopics
e ROS/Tutorials/UnderstandingServicesParams

http://wiki.ros.org/roscore
http://wiki.ros.org/Nodes
http://wiki.ros.org/roslaunch
http://wiki.ros.org/Master
http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/rosout
http://wiki.ros.org/turtlesim/Tutorials
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams

Turtlesm Node

We will start the turtlesim node and explore its properties. Execute roscore and in a new terminal create
the turtlesim node from the package turtlesim:

$ roscore
$ rosrun turtlesim turtlesim_node 2]
[INFO] [1516751529.792931813]: Starting turtlesim with node name /turtlesim

[INFO] [1516751529.797525686]: Spawning turtle [turtlel] at x=[5.544445], y=[5.544445],
theta=[0.000000]

The rosrun command takes the arguments [package name] [node name]. The node creates the screen
image and the turtle. Here the turtle is in the center in x=5.5, y=5.5 with no rotation.

@e TurtleSim

Before moving the turtle, let us study the properties of the nodes, topics, service and messages available
within turtlesim package in another window. (remember to use terminator)

ROS Nodeswith Turtlesm
rosnode list [3]
$ rosnode list

[rosout

fturtlesim

Note the difference in notation between the node /turtlesim and the package turtlesim.

racing@racing-vm:~$
Node [/turtlesim]
Publications: (This information is sent to nodes listening to /turtlesim)
* [turtlel/color_sensor [turtlesim/Color] (Color message in turtlesim package)

* [rosout [rosgraph_msgs/Log]
* [turtlel/pose [turtlesim/Pose] (Pose message in turtlesim package for /turtlel)

Subscriptions:
* [turtlel/cmd_vel [unknown type] (This node will listen for command velocities)

(We can use ROS services to manipulate the turtle and perform other operations.)

Services: (The format is $rosservice call <service> <arguments>)
* Jturtlel/teleport_absolute

* [turtlesim/get_loggers

* [turtlesim/set_logger_level

* [reset

* [spawn

* [clear

* [turtlel/set_pen

* [turtlel/teleport_relative

* kil

contacting node http://D104-45931:42032/ ...
Pid: 4911
Connections:
* topic: /rosout
* to: /rosout
* direction: outbound
* transport: TCPROS

The node /turtlesim publishes three topics and subscribes to the /turtlel/cmd_vel topic. The services for the
node are listed also.

ROS Servicesto Movethe Turtle

Services: (We can use ROS services to manipulate the turtle and perform other operations
- the format is $rosservice call <service> <arguments>)

* [turtlel/teleport_absolute

* [turtlesim/get_loggers

* [turtlesim/set_logger_level

* [reset

* [spawn

* [clear

* [turtlel/set_pen

* [turtlel/teleport_relative
* kil

The turtle can be moved using the rosservice teleport option. The format of the position is [x y theta].

teleport_absolute

racing@racing-vm:/$ r osservice call /turtlel/teleport_absolute 110 [5]

TurtleSim
TurtleSim

Turtle After Absolute Move Turtle After Relative Move

The relative teleport option moves the turtle with respect to its present position. The arguments are
[linear, angle]

teleport_relative

rosservice call /turtlel/teleport_relative 1 0 [6]

Turtle now at x=2, y=1.

Turtlessim Node Topic Pose

Another topic for turtlesim node is the turtle’s pose. This is the x, y position, angular direction, and the
linear and angular velocity.

Type: turtlesim/Pose
Publishers:

* [turtlesim (http://D104-45931:42032/)
Subscribers: None

This displays the message type.

racing@racing-vm:~$

turtlesim/Pose -

Confirming the message type

tlharmanphd@D125-43873:~$

float32 x

float32 y Show/display the message fields.

float32 theta

float32 linear_velocity

float32 angular_velocity

ttharmanphd@D125-43873:/$
x: 2.0
y: 1.0
theta: 0.0
linear_velocity: 0.0
angular_velocity: 0.0
x:2.0
y: 1.0
theta: 0.0
linear_velocity: 0.0
angular_velocity: 0.0

Echo the message to the terminal, i.e.
display the message values.

Continuous output of the position, orientation, and velocities. Compare to the position on the turtle
window. Ctrl+c to stop output.

http://wiki.ros.org/ROS/Tutorials/Understanding Topics

http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics

Makethe Turtlemovein acirclerostopic pub <command>

racing@racing-vm:~$
Node [/turtlesim]
Publications:
* fturtlel/color_sensor [turtlesim/Color]
* [rosout [rosgraph_msgs/Log]
* [turtlel/pose [turtlesim/Pose]

Subscriptions:
* [turtlel/cmd_vel [unknown type]

Services:

* [turtlel/teleport_absolute
* [turtlesim/get_loggers

* fturtlesim/set_logger_level
* [reset

* [spawn

* [clear

* [turtlel/set_pen

* [turtlel/teleport_relative

* [kill

contacting node http://D104-45931:42032/ ...
Pid: 4911
Connections:
* topic: /rosout
* to: /rosout
* direction: outbound
* transport: TCPROS

Type of message for cmd_vel

racing@racing-vm:~$
geometry_msgs/Twist Once again, rostopic type <topic name> displays the type of message in the topic
racing@racing-vm:~$
geometry_msgs/\Vector3 linear
float64 x
float64 y Let us take a look at the geometry_msgs/Twist message type
float64 z
geometry_msgs/Vector3 angular
float64 x
float64 y
float64 z

Using the Linux shell we can combine two commands. The | operator is used to pipe commands into the shell.
A pipe is a form of redirection that is used in Linux systems to send the output of one program to another program.

The general syntax for pipesis: command_1 | command_2 | command_3 . ..

geometry_msgs/\Vector3 linear
float64 x
float64 y
float64 z
geometry_msgs/Vector3 angular
float64 x
float64 y
float64 z

The requirement is for two vectors with 3 elements each. The message type is geometry msgs/Twist .

To get a list of messages for ROS of geometry_msgs
http://wiki.ros.org/geometry msgs

This displays a verbose list of topics to publish to and subscribe to and their type:

$
Published topics:
* [turtlel/color_sensor [turtlesim/Color] 1 publisher

* [rosout [rosgraph_msgs/Log] 1 publisher
* [rosout_agg [rosgraph_msgs/Log] 1 publisher
* fturtlel/pose [turtlesim/Pose] 1 publisher

Subscribed topics:
* [turtlel/cmd_vel [geometry _msgs/Twist] 1 subscriber

* [rosout [rosgraph_msgs/Log] 1 subscriber

Moving the Turtle Once
The following command will send a single message to turtlesim telling it to move with a linear velocity of 2.0,
and an angular velocity of 1.8. It will move from its starting position along a circular trajectory for a distance and

then stop.
$

-r RATE, --rate=RATE publishing rate (hz). For -f and stdin input, this
defaults to 10. Otherwise it is not set.
-1, --once publish one message and exit

http://wiki.ros.org/geometry_msgs

NOTE: Here is a place to use TAB completion to find data formats for this command:
Lets try it:

$ With result:
racing@racing-vm:~$ rostopic pub -1 /turtlel/cmd_vel geometry _msgs/Twist " linear:

x: 0.0

y: 0.0

z: 0.0

angular:

x: 0.0

y: 0.0

z: 0.0"
Now back space to fill in the values z= 1.8 and x=0.0. (Not executed)

Whereistheturtle? (After thelnitial Command)
$
x: 3.0583717823
y: 2.39454507828
theta: 1.81439995766
linear_velocity: 0.0
angular_velocity: 0.0
Use CNTL+c to stop the output of position, orientation and velocity.

A geometry_msgs/Twist msg has two vector s of three floating point elements

each: linear and angular. In this case, '[2.0, 0.0, 0.0]' becomes the linear value with x=2.0, y=0.0, and
z=0.0, and '[0.0, 0.0, 1.8]' is the angular value with x=0.0, y=0.0, and z=1.8. These arguments are
actually in YAML syntax, which is described more in the YAML command line documentation.

2.0, 0.0, 0.0]' 0.0, 0.0, 1.8]'

You will have noticed that the turtle has stopped moving; this is because the turtle requires a steady
stream of commands at 1 Hz to keep moving. We can publish a steady stream of commands using
rostopic pub -r command:

Here we publish the topic /turtlel/command_velocity with the message to repeat the message at 1
second intervals with linear velocity 2 and angular velocity 1.8. The node turtlesim subscribes to the
message as shown by the command $ rosnode info /turtlesim shown before with the subscription:
Subscribed topics:
* Jturtlel/cmd_vel [geometry _msgs/Twist] 1 subscriber rostopic pub

10

http://wiki.ros.org/ROS/YAMLCommandLine

Maketheturtlemovein acircle

Let’s reset Turtlesim

racing@racing-vm:~$ r osservice call /reset [19]

racing@racing-vm:~$ rostopic pub -r 1 /turtlel/emd vel geometry msgs/Twist - '[2.0, 0.0, 0.0]" "[0.0,
0.0, 1.8]" [20]

TurtleSim

Turtlemoving in acircle
rostopic hz
Show the rate in Hz for publication (Crtl-C to stop data):

rostopic hz /turtlel/pose [21]

subscribed to [/turtlel/pose]
average rate: 62.501

min: 0.016s max: 0.016s std dev: 0.00014s window: 62
average rate: 62.501

min: 0.016s max: 0.016s std dev: 0.00014s window: 124
average rate: 62.504

min: 0.016s max: 0.016s std dev: 0.00014s window: 187
average rate: 62.500

min: 0.016s max: 0.016s std dev: 0.00014s window: 249
average rate: 62.496

min: 0.015s max: 0.017s std dev: 0.00014s window: 300

Output at about a 60 Hz rate. Updated every 16 ms.

11

Using rqgt plot with Turtlesim

http://wiki.ros.org/rqt_plot

rqt_plot
We can plot information about the nodes and topics.

$ rqt_plot /turtlel/pose/x:y:z [22]

Turtle is turning in a circle about 5.5 Ymin x goes from about 4.5 to 6.5.

Axes Curves

Title

X-Axis

Min B.72602295875549
Max 4.72602295875549
Label

Scale linear

Y-Axis

Min 4.0

Max 1172935485839844
Label Position

Scale linear

(Re-)Generate automatic legend

Apply Cancel | OK

Selection of Axis for rqt_plot (Click on the check mark)

Experiment with different controls allowed for the plot such as changing the scales, etc.

e rqt_plot__Plot - rqt

@MatPlot D@ -0
Topic// = @ autoscroll] =
P 0O + ¢ @ & x=353.093 y=4.92144

— [turtlel/pose/x
80| — Jturtlel/posely
75
70
63
55
50
as
a0

349 350 351 352 353 354

http://wiki.ros.org/rqt_plot

Plot of /turtlel/pose/x and /posely

Period of just over 3 seconds for 360 degree rotation. Note the periodic motion in x and y. Right click
to change values for axes, etc.

Choosing only x and y positions and experimenting with scales and autoscroll. See the tutorial for
further help.

http://wiki.ros.org/rat plot

To plot from the command line, both of the following lines plot the same topics according to the wiki.

$ rqt_plot /turtlel/pose/x:y:z
$ rqt_plot /turtlel/pose/x /turtlel/posely /turtlel/pose/z

Obviously, if you want to change the topics to plot, you need to restart the program and give the new topic names.

13

http://wiki.ros.org/rqt_plot

Keyboard Control

In a third window, we execute a node that allows keyboard control of the turtle. Roscore is running in
one window and turtlesim_node in another.

$

racing@racing-vm:~$ rosrun turtlesim turtle_teleop_key
Reading from keyboard

Use arrow keys to move the turtle.

Up arrow Turtle In Turtle’s x direction
Down arrow Turtle In Turtles’s -X direction
Right arrow Rotate CW

Left arrow Rotate CCW

racing@racing-vm:~$
/rosout
Iteleop_turtle
fturtlesim

Notice that now we have a new nodein thelist called /teleop_turtle

racing@racing-vm:~$

Node [/teleop_turtle]

Publications:
* [turtlel/cmd_vel [geometry_msgs/Twist]
* [rosout [rosgraph_msgs/Log] The /teleop _turtle node is publishing on topic /turtlel/cmd_vel

Can you tell the message type for this topic ?

Subscriptions: None
The /teleop_turtle node does not subscribe to any topic.
Services:
* [teleop_turtle/get_loggers
* [teleop_turtle/set_logger_level

contacting node http://D104-45931:43692/ ...
Pid: 8381
Connections:
* topic: /rosout
* to: /rosout
* direction: outbound
* transport: TCPROS
* topic: /turtlel/cmd_vel
* to: /turtlesim
* direction: outbound
* transport: TCPROS
Notice publication of /turtlel/cmd_vel [geometry _msgs/Twist]

14

Let uslook again at the node /turtlesim after we have started runing the /teleop_turtle node

racing@racing-vm:~$
Node [/turtlesim]
Publications:
* [turtlel/color_sensor [turtlesim/Color]
* [rosout [rosgraph_msgs/Log]
* [turtlel/pose [turtlesim/Pose]

Subscriptions:
* [turtlel/cmd_vel [geometry _msgs/Twist]

Services:

* [turtlel/teleport_absolute
* [reset

* [clear

* [turtlel/teleport_relative

* kil

* [turtlesim/get_loggers

* [turtlesim/set_logger_level
* [spawn

* [turtlel/set_pen

contacting node http://D104-45931:42252/ ...
Pid: 7956
Connections:
* topic: /rosout
* to: /rosout
* direction: outbound
* transport: TCPROS
* topic: /turtlel/pose
*to: /rqt_gui_py_node 22321
* direction: outbound
* transport: TCPROS
* topic: /turtlel/cmd_vel
* to: /teleop_turtle (http://D125-43873:44984/)
* direction: inbound
* transport: TCPROS

Note: New topic /turtlel/cmd_vel to /teleop_turtle

15

Tomoveturtlewith arrow keys, be surethefocusison theterminal that isrunning turtle teleop key.

©® TurtleSim

Turtlesm keyboard control

Now start a fourth terminal window to view the infor mation that is available through ROSfor the
Turtlesm. The commandsin that window elicit data while the other windows keep the turtle active. To
movetheturtle, use window three.

2 tlharmanphd@D125-43873: ~

roscore http://D125-43873:11311/ 42x12 22 tlharmanphd@D125 43873: ~ 42x12
NODES Lharmanp 25-43873:~% rosrun turtlesim

auto-starting new master
process[master]: started with pid [10034]
ROS_MASTER_URI=http://D125-43873:11311/

setting /run_id to f28764e4-a7fe-11e4-8fbo
-3417ebbca982

process[rosout-1]: started with pid [10047
1

started core service [/rosout]

. tlharmanphd@D125 -43873: ~ 42x12
3873:~$% rosrun turtlesim @tlharman P 3:~% rqt grap

16

1. List the ROS parameters to get information about the ROS nodes. The nodes are
generally the executable scripts in ROS.
2. Determine what information you can get for the node turtlesim.

(Publications and Subscriptions)
racing@racing-vm:~$
/rosout
/rosout_agg
/turtlel/cmd_vel
/turtlel/color_sensor
/turtlel/pose

One important topic is /turtlel/cmd_vel which will be published using the keyboard or by publishing the
topic with the rostopic pub command.

Determine data from Topic /turtlel/cmd_vel

The rostopic echo command shows the data sent by the node to control the turtle. As you move the
turtle, the data are updated. As you press the arrow keys the displayed values will change: x velocity if
linear motion, z velocity if rotation.

tlharmanphd@D125-43873:~$
linear:
x: 2.0 (\Velocity ahead)
y: 0.0
z:0.0
angular:
x: 0.0
y: 0.0
z:0.0
linear:
x: 2.0
y: 0.0
z:0.0
angular:
x: 0.0
y: 0.0
z:0.0
linear:
x:-2.0
y: 0.0

17

http://en.wikipedia.org/wiki/Ubuntu_Software_Center
https://apps.ubuntu.com/cat/applications/terminator/

z:0.0
angular:
x: 0.0
y: 0.0
z:0.0

linear:
x: 0.0
y: 0.0
z:0.0
angular:
x: 0.0
y: 0.0
z:2.0 (Counter Clockwise Rotational velocity about z axis — out of window)

These show the parameters for cd_vel which are linear velocity and angular velocity. In this result,
the turtle was moved linearly until the last output which shows a rotation.

18

To find the turtle’s position in the ocean, use /turtlel/pose

ttharmanphd@D125-43873:~$ rostopic echo /turtlel/pose [29]
X: 5.544444561
y: 5.544444561
theta: 0.0
linear_velocity: 0.0
angular_velocity: 0.0

CNTL+c to stop output. Here the turtle is at rest in the center of the window.

If you return to the teleop_key window and move the turtle with the arrow keys you can see the output
of the pose message (turtlesim/Pose) change. Remember the format:

tlharmanphd@D125-43873:~$ rosmsg show turtlesim/Pose
float32 x
float32 y
float32 theta
float32 linear_velocity
float32 angular_velocity

We can maketheturtleturnin acircle by publishing the topic turtlel/cmd_velocity

Srostopic pub -r 1 /turtlel/cmd_vel geometry_msgs/Twist -- '[2.0, 0.0, 0.0]' '[0.0, 0.0, 1.8]'

TurtleSim

Turtlerespondsto published topic

19

The command will publish at a rate (-r) of once a second (1 Hz). The topic /turtlel/command_velocity is
followed by the message type turtlesim/Velocity that commands the turtle to turn with linear velocity 2.0 and
angular velocity 1.8 according to the ROS tutorial:

http://wiki.ros.org/ROS/Tutorials/Understanding Topics

Try changing the rate to 0.5 or some value less than 1 to see the turtle stall in the circle.

As noted before, a turtlesim/Velocity message has two floating point elements : 1inear and angular. In this case,
2.0 becomes the linear value, and 1. 8 is the angular value. These arguments are actually in YAML syntax, which
is described more in the YAML command line documentation.

To clear theturtlesim screen use:

racing@racing-vm:~$ rosservice call /clear

20

http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
http://wiki.ros.org/ROS/YAMLCommandLine

